
ChainLink: Indexing Big Time Series Data For
Long Subsequence Matching

Noura Alghamdi, Liang Zhang, Huayi Zhang, Elke A. Rundensteiner, Mohamed Y. Eltabakh
Worcester Polytechnic Institute
Worcester, MA 01609, USA

(nalghamdi, lzhang6, hzhang4, rundenst, meltabakh)@wpi.edu

Abstract—Scalable subsequence matching is critical for sup-
porting analytics on big time series from mining, prediction to
hypothesis testing. However, state-of-the-art subsequence match-
ing techniques do not scale well to TB-scale datasets. Not
only does index construction become prohibitively expensive,
but also the query response time deteriorates quickly as the
length of the query subsequence exceeds several 100s of data
points. Although Locality Sensitive Hashing (LSH) has emerged
as a promising solution for indexing long time series, it relies
on expensive hash functions that perform multiple passes over
the data and thus is impractical for big time series. In this
work, we propose a lightweight distributed indexing framework,
called ChainLink, that supports approximate kNN queries over
TB-scale time series data. As a foundation of ChainLink, we
design a novel hashing technique, called Single Pass Signature
(SPS), that successfully tackles the above problem. In particular,
we prove theoretically and demonstrate experimentally that the
similarity proximity of the indexed subsequences is preserved
by our proposed single-pass SPS scheme. Leveraging this SPS
innovation, Chainlink then adopts a three-step approach for
scalable index building: (1) in-place data re-organization within
each partition to enable efficient record-level random access to all
subsequences, (2) parallel building of hash-based local indices on
top of the re-organized data using our SPS scheme for efficient
search within each partition, and (3) efficient aggregation of the
local indices to construct a centralized yet highly compact global
index for effective pruning of irrelevant partitions during query
processing. ChainLink achieves the above three steps in one
single map-reduce process. Our experimental evaluation shows
that ChainLink indices are compact at less than 2% of dataset
size while state-of-the-art index sizes tend to be almost the same
size as the dataset. Better still, ChainLink is up to 2 orders
of magnitude faster in its index construction time compared to
state-of-the-art techniques, while improving both the final query
response time by up to 10 fold and the result accuracy by 15%.

I. INTRODUCTION

A. Background and Motivation

Time series data are ubiquitous and pervasive across almost

all human endeavors. Over the last decade, the explosion of new

technologies ranging from wearable sensors to social networks

has lead to an unprecedented growth of time series data. For

example, in Zhejiang Province of China, 20 million smart

meters have been deployed, producing around 20 million time

series per year each of length around 0.5 million readings [1].

As a consequence, scalable solutions for processing, querying

and mining long time series that leverage modern distributed

compute infrastructures become a necessity. Most time series

mining algorithms from query-by-content, anomaly detection,

classification to segmentation rely on subsequence similarity

search, e.g., kNN subsequence search, as a core subroutine.

Examples from real-world applications are highlighted below.

Motivating Example 1 (Neuroscience Applications):
Given a massive archive of Electroencephalography (EEG)
data, a neurologist may need to search for a certain number
(k) of epileptic spikes most similar to a given patient’s epileptic
spike to decide whether or not to classify him as an epilepsy
patient. The value k needs to be large to avoid the influence of
noise on the result, while still being appropriate for subsequent
human analysis. In this use case, the length of an epileptic
spike, here equal to the length of the matching query sequence,
typically reaches over 7000 data points [2].

Motivating Example 2 (Smart Grid Applications): In
smart grid applications, if a smart meter were to collect one
meter reading every minute, it would collect more than 0.5
million meter readings per year for each of its sensors [1]. A
business analyst may want to learn about comparative customer
electricity consumption behaviours by answering queries such
as: ‘find k households whose electricity consumption starting
at any period of time are approximately similar to a certain
given household Q”. Since we aim to identify similar behavior,
approximate match results suffice.

B. Common Problem Characteristics and Technical Challenges

The examples highlighted above, among many others,

share common characteristics that drive our research. First,

the kNN subsequence search is the core building block

operation for these queries. In fact, in the context of

time series applications−and high dimensional data in

general−approximate kNN tends to be the norm compared to

the exact kNN match [3], [4]. This is because: (1) Approximate

processing tend to be highly accurate and satisfactory for most

applications, and (2) This relaxation opens up opportunities

for substantial improvements in query response time and

preprocessing overheads involved in the developed solution.

Second, time series datasets can be in the order of 100s of

millions of time series (TBs of data). At such scale, the datasets

are stored and processed in distributed systems such as Hadoop

or Spark. Third, query subsequences in modern time series

applications tend to be very long, and in some cases reaching

thousands of readings [1]. Therefore, the focus of our work

is on supporting approximate kNN similarity search over long

529

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00052

(thousands-scale) time series subsequences in a distributed
environment, which has not yet been satisfactorily solved in

the literature.

The challenges in solving this problem include:

(1) High Dimensionality: Long subsequences are high

dimensional objects. Traditional indexing techniques such as

R-trees and their variations are known to perform poorly in

retrieval of such data [5]. Other state-of-the-art non-indexing

techniques, such as prune-and-bound [2], also suffer from a

degraded performance for such long subsequences because

the later lead to loose bounds and thus ineffective pruning as

confirmed in our experimental section (Section V-C).

(2) Significant Overlap: The enumeration of all possible

subsequences for indexing is prohibitively expensive in both

processing time and space as we will show experimentally

in (Section V-C) for existing technique that perform such

enumeration [6]. That is due to the significant overlap among

consecutive subsequences.

(3) Random Access: In subsequence search, there is no clear

criteria for re-partitioning and clustering the input time series

data to create clustered index based on a similarity function.

This is because two time series objects can be very similar with

respect to one subsequence, while at the same time, very distinct

with respect to another subsequence. Therefore, subsequence

queries are more likely to require record-level (i.e. object-level)

random access to retrieve time series objects from different

partitions. Nevertheless, modern distributed infrastructures,

such as Hadoop and Spark, are designed to support full scans

over the data partitions, which are inefficient and unfortunately

involve unnecessarily high overhead.

(4) Speed vs. Accuracy Trade-off: Typically, in approximate

matching, an algorithm’s speed and accuracy are contradictory

objectives. Unfortunately, with the big scale of modern time

series datasets, small blocks in an algorithm can magnify and

become a critical scalability bottleneck, and that is exactly what

we have observed in the state-of-art technique [7]. Therefore, a

key objective of our work is to design a strategy that achieves

high accuracy results for processing kNN matching queries

while making the algorithm bottleneck free.

C. Limitations of the State-of-the-Art

Existing distributed techniques fail to address one or more of

the aforementioned challenges, which hinders their scalability.

For example, a recent distributed indexing solution called KV-
Match [6], builds an index over all possible subsequences. Our

experimental study demonstrates that building such an index

over a few TBs of data takes days, while requiring storage in

the scale of the original data (refer to 2nd and 4th challenges

above). In contrast, the distributed indexing solution in [1]

does not solve the subsequence matching in its general form.

Instead, it supports a restricted type of queries that involve

prefix matching, e.g., users input the precise offset where the

search should starts in each time series as query parameter.

Further, these techniques [1], [6] use HBase as their underly-

ing storage layer for time series data because HBase internally

supports record-level random access (see 3rd challenge above).

Unfortunately, the subsequence index itself is then stored

as an Hbase table regardless of its structure, e.g., inverted

table or tree structure. This design decision leads to severe

disadvantages, including the limited query capability of HBase

(limited API) that requires a huge sequential access across the

Hbase table to retrieve the whole index structure to query, need

to having to maintain copies of the data also in other systems

such as Hadoop or Spark, and additional latency due to extra

communication between Hbase, HDFS and these systems [8].

In contrast to distributed systems, UCR Suite [2] is the state-

of-the-art centralized technique for time series subsequence

search. UCR is a prune-and-bound technique that does not

preprocess the dataset into an index. However, when we adopt

and adapt this UCR strategy into its distributed UCR variant

for processing datasets distributed across HDFS consisting of

millions of time series, the performance suffers notably due to

in part having to reset the search bounds frequently for each

time series. Moreover, as our experimental study in Section IV

shows, when the query length grows, the bounds become too

loose to produce effective pruning (See 1st challenge above).

D. Proposed Approach: ChainLink

In this paper, we propose a distributed indexing framework

over time series data called “ChainLink”. ChainLink adopts

the duality-based approach [9] for subsequence generation,

which avoids the enumeration of all possible subsequences in

the dataset and hence achieves a compact index size. Given

our target of approximate kNN search, we utilize the popular

Locality Sensitive Hashing (LSH) [10]–[12] as the base of

our index. One key property of LSH is its ability to preserve

the similarity among high-dimensional objects upon hashing

with a high probability [10]–[12]. Unfortunately, the state-of-

art techniques in LSH for indexing time series data, e.g., the

SSH algorithm [7], suffer from scalability limitations as they

inherently rely on very expensive multi-pass hash functions.

To overcome this scalability limitation, we propose a novel

hashing technique, called Single Pass Signature (SPS). SPS

achieves around 200x speedup compared to state-of-the-art

techniques. In addition, our theoretical analysis of the SPS

scheme guarantees that the similarity proximity between

subsequences is preserved after hashing without sacrificing

the accuracy for kNN query results.

To enable efficient search, we design ChainLink as a two-

layer distributed index composed of a centralized global index

(CL-Global) to direct the search to specific partition(s), and

multiple distributed local indices spread across the worker

nodes. Within each partition, the time series data are first re-

organized locally and then the compact local ChainLink index

(CL-Local) is built.

The key contributions of this paper include:
• We address the four core technical challenges highlighted

in Section I.B by the design of a cohesive framework,

namely ChainLink. To address the 1st challenge, we

utilize hash-based approach containing our novel SPS that

reduces the dimensionality while preserving the similarity

of the hashed subsequences. For the 2nd challenge,

530

ChainLink leverages the duality-based method to generate

disjoint subsequences and thus minimize the index size.

• We design a two-layered distributed index structure that

leverages a partition-level data re-organization to achieve

fast search and efficient random access operations (the

3rd challenge).

• We propose a novel hashing technique called Single Pass
Signature (SPS) that hashes the subsequences in a single

pass achieving ≈ 200 speedups compared to the standard

technique adopted in existing system [7] while maintaining

excellent result accuracy, thus tackling the 4th challenge.

• We conduct an extensive experimental study on benchmark

datasets. The results show significant improvement in

index construction time (up to two orders of magnitude

speedup), index size compactness (the local index size is

less than 2% of dataset size while the global index size is

only few MBs for TB-Scale dataset), and query response

time (which is 10 fold faster than the state-of-the-art

technique [2]).

The rest of the paper is organized as follows. Section II

introduces preliminaries for our work. We then describe the

ChainLink framework and its innovations in Section III. Section

IV introduces the ChainLink query processing strategy, while

Section V presents our experimental results. Finally, we discuss

related work in Section VI and conclude in Section VII.

II. PRELIMINARIES

A. Key Concepts of Time Series

Definition 1. [Time Series Dataset] A time series dataset

D = {X1, X2, · · · , XM} is a collection of M time series

objects Xi, each with an arbitrary length denoted as |Xi|.
Definition 2. [Time Series] A time series X =
〈x1, x2, · · · , xm〉, xi ∈ R where 1 ≤ i ≤ m is an ordered

sequence of m real-valued variables. Without lost of generality,

we assume that the readings arrive at fixed time granularities,

and hence timestamps are implicit. For simplicity, we thus do

not store timestamps.

Definition 3. [Subsequence of Time Series] A subsequence

X
(j,l)
i of object Xi is a time series of length l starting at

position j in Xi, namely, X
(j,l)
i =< xsub

1 , xsub
2 , ..., xsub

l >
such that xsub

1+u = xj+u where u = [0, l − 1].

Definition 4. [Euclidean Distance (ED)] Given two sub-

sequences of equal length l, X = 〈x1, x2, · · · , xl〉 and

Y = 〈y1, y2, · · · , yl〉, Euclidean Distance (ED) is defined as:

ED(X,Y) =

√√√√ l∑
i=1

(xi − yi)2 (1)

Definition 5. [kNN Approximate Query] Given a query

subsequence Q = 〈q1, q2, · · · , ql〉, a time series dataset

D = {X1, X2, · · · , XM} and an integer k, the query returns

a set R of k subsequences such that R = {X(j,l)
i ∈ D, ∀ i, j}

with |R| = k subject to the approximation accuracy measured

by the error ratio (err) = 1
k

k∑
i=1

ED(X
(j,l)
i ,Q) ∀Xi∈R

ED(Yi,Q) ∀Yi∈T , where

T = {Y1, Y2, · · · , Yk} corresponds to the exact kNN answer

set of Q on D.

The error ratio (err) in Def. 5, is a standard metric used

in the LSH-related literature [11], [13], measures the distance

between the returned approximate knn set and the exact knn
set. The smaller the error err, the closer the approximation

and with err = 1 denoting the exact solution.

B. Background on LSH

With locality sensitive hashing (LSH) [10] a core component

of our proposed indexing technique, we overview the main idea

of LSH below. LSH is a widely adopted technique for searching

nearest neighbors in high-dimensional spaces. LSH provides a

high probability guarantee that it will return the correct answer

or a very close one [10]–[12]. For each object in the dataset D,

LSH performs a dimensionality reduction operation to extract

random features among the high-dimensional features, and then

hashes each object based on these extracted features. The key

principle here is that the hashing step is repeated multiple times,

with at each time, different random features being selected

and each object being hashed to a different hash table. The

intuition is that similar objects are highly probable to collide

and thus to go into the same bucket in at least one of the hash

tables.

Weighted Minwise Hashing (WMH). Several techniques

of the LSH family have been proposed in the literature to

handle different similarity functions. They differ in the random

function that extracts the features and the manipulation of the

features before hashing. A popular LSH variant, Weighted

Minwise Hashing (WMH) [14]–[16] estimates the Jaccard
similarity on weighted sets. Weighted sets means that the

algorithm not only keeps track of the features (exist or not),

but also their weights, i.e., the frequency of their presence. The

definition of the Jaccard similarity is given next in Def. 6.

Definition 6. [Jaccard similarity (JS)] Given two weighted

sets S1 and S2, each a vector in the D-dimensional space

of integer values, i.e., S1 =< s11, ..., s1i, s1D >,S2 =<
s21, ..., s2i, s2D > such that s1i, s2i ∈ Z, the JS is defined

as:

JS(S1, S2) =

D∑
i=1

min(s1i, s2i)

D∑
i=1

max(s1i, s2i)

(2)

WMH generates randomized hash values such that the

probability of a hash collision of a pair of sets S1 and S2

is given by Eq. 3 [14]:

Pr[WMH(S1) = WMH(S2)] = JS(S1, S2). (3)

Equation 3 is an important property of WMH because it

enables us to compare the hashing signatures of two weighted

sets and estimate their Jaccard similarity without the need to

actually retrieve the raw time series data [12].

531

To generate a weighted minhash signature for a weighted

set Si, it is passed g times to apply g randomly picked hash

functions on it, where g is a fixed integer parameter resulting

in a signature (sig) of length g.

Consistent Weighted Sampling (CWS) [15] is a popular

technique adopted for hashing weighted sets. CWS samples

from some well-tailored distribution to avoid replication. This

scheme computes the exact distribution of minwise sampling

with time complexity O(d), where d corresponds to the number

of non-zeros. However, this computation has to be performed

g times, and thus the total complexity becomes O(d× g). As

pointed out in [14] and confirmed by our experiments (Section

V-B), this operation, which most sophisticated, can still be quite

expensive resulting in a major bottleneck, especially when the

datasets are big and g is large [14].

Observation. To overcome these scalability limitations of

CWS, a new hashing technique has been proposed [14]. It offers

remarkable speedup over CWS but only under the constraint

that the weighted set vectors are relatively dense, i.e., most

entries are non-zeros.

However, unfortunately, the time series data we work with

does not meet this assumption. That is, although in itself it is

not sparse, meaning there are no necessarily missing values,

the weighted set vectors generated (as will be explained later

in III-B, Step 3) are typically very sparse (See our exp. in

Section V-A). This can be explained by the fact that time series

data do not involve drastic fluctuations nor variations across

its values – in contrast to other dataset types such as text or

image data (more details in III-B, Step 4). For this reason, this

state-of-the-art technique [14] is not effective in our context.

III. OUR PROPOSED CHAINLINK INDEX

A. ChainLink Overview

We now introduce ChainLink, a distributed indexing frame-

work for time series datasets. The overall work flow of

ChainLink is illustrated in Figure 1. ChainLink builds a local

index (CL-Local) respectively over all time series stored in each

partition managed by a cluster machine and then aggregates

these local indices to construct a global index (CL-Global).

The data are stored in distributed files that can be either

disk-based, e.g., Hadoop HDFS files, or memory-based, e.g.,

Spark RDDs. In either case, each file is divided into several

partitions stored across cluster machines. Since our system is

implemented using Spark, in the rest of the paper, and without

loss of generality, we use the Spark RDD terminology. Each

RDD partition consists of a set of time series objects {X1,

X2, ...}, where each Xi is as defined in Def. 2. Each Xi is

represented within the partition as a single record.

B. ChainLink Local Indices (CL-Local)

The CL-Local building process is composed of four steps:

1) Record Organization: the raw time series objects are re-

organized within each partition into an array structure to

enable efficient random access. 2) Chunk Generation: each

time series is divided into non-overlapping equal length chunks.

3) Chunk Feature Extraction: each chunk is transformed into

RDD
Chunk

Generator Sketch n-gram
Generator Hash

Local
Index

Partition#:
P2

Indexed Partition IP2

Global
Index

Unorganized
TS Block

Array-organized TS block

Fig. 1. Two-level Indexing Strategy in ChainLink.

a low-dimensionality feature vector by sketching the chunk

followed by generating n-grams of the sketches along with their

frequencies as weights to form a weighted set. 4) Hashing: our

proposed SPS scheme is applied on the generated weighted set

to hash each into a lower-dimension signature. The intuition

of this step is that given two weighted set vectors Si and Sj

corresponding to base chunks Xi and Y j , the similarity of Si

and Sj should capture the similarity of their underlying chunks.

However, calculating set similarity is excessively expensive

especially for massive scale datasets (refer to Def. 6). For this

reason, we instead propose a new hashing scheme that maps

Si and Sj into lower-dimension signatures which preserve the

proximity of the weighted sets. Lastly, we hash those signatures

into hash tables which collectively serve as the local index.

Finally, the local index is stored along with the arranged array

time series data in the same partition.

Step 1 (Record Organization): The first challenge in

indexing time series objects is that RDDs are primarily

designed for sequential scans. Thus random access to a specific

subsequence within a partition tends to be very expensive.

Worse yet, a subsequence query may match with few time series

objects in many distinct partitions. Thus, we need to design

an efficient record look-up mechanism within each partition to

avoid unnecessary full scans, where each record corresponds

to a time series object. To achieve this, we arrange the time

series records within every partition into an array structure as

illustrated in Figure 1. A time series in partition p and array

slot t gets assigned a new physical id pid = (p, t) that is used

in all subsequent computations during the index construction.

These ids are subsequently used to locate a particular time

series efficiently within each partition in O(1) cost.

Step 2 (Chunk Generation): Duality-based [9] approach

has been explored in literature for chunk generation. It divides

time series objects into disjoint chunks using a disjoint jumping
window mechanism, while the query sequence is divided into

overlapping chunks using a one-step sliding window.

In ChainLink, we aim to keep the size of the index compact.

We thus adopt the duality-based approach as it significantly

reduces the number of the generated chunks at data level during

index construction. Therefore, for a given time series object

X with physical id (p, t), we generate its disjoint chunks of

length w, each with a unique id (p, t, i), where i denotes the

chunk number (0 ≤ i ≤ (|X|/w − 1)). Since local indices are

at the granularity of a single partition p, the value p is implicit

and need not be physically stored within the local index. In

the rest of the paper, we refer to the ith chunk of X by Xi.

532

1

0

1

r

< 0

Fig. 2. Generating a sketch B10 capturing the pattern of chunk X10.

As studied in [9], the determination of the window size w is

based on the query workload and the minimum query length

parameter that is to be supported. Typically, if the minimum

length of a query sequence is minLen, then the maximum

window size should be at most �(minLen+1)/2	. The authors

in [9] provide a theoretical analysis that if these bounds are

honored, then it is guaranteed no patterns in the time series

will be missed under this slicing scheme. ChainLink inherits

these guarantees under these same assumptions.

Step 3 (Chunk Feature Extraction): In this step, each

chunk is transformed into a low-dimensionality feature vector.

This vector will later form the weighted set vector on which

SPS is applied. Similar to the technique proposed in [7], the

feature extraction in ChainLink consists of two procedures,

namely sketching and n-gram generation. We opt for these two

procedures since they bring the following benefits. First, they

reduce the dimensionality of the possibly long chunks. Second,

they convert the continuous domain of the time series readings

into a discrete domain on which hashing can be applied. Third,

they capture the trends in each chunk using the fine-grained

n-gram elements such that the more similar two chunks are

the more n-grams they are likely to share.

Sketching: The sketching procedure converts each chunk

of continuous values into a sequence of discrete binary values,

which also capture the overall trend of the chunk [17].

Given a chunk Xi, a random vector r of length |r|, where

each component of r is selected from a normal distribution

N(0, 1) and a sketching step size δ, the extracted sketch Bi

then corresponds to : Bi = (b1, b2, . . . , b|Bi|), where |Bi| =
|Xi|−|r|

δ . Let bz be the zth component of Bi, where 1 ≤ z ≤
|Bi|, bz is calculated as follows :

bz =

{
1 if r ·Xz ≥ 0

0 if r ·Xz < 0
(4)

where z = i∗δ, therefore Xz = {Xz, Xz+1, . . . , Xz+|r|−1}
is the subseries of length |r| within the chunk Xi.

Example 1. Assume we sketch the chunk X10 starting at
position 10 within its time series X and |X10| = 20. Given
a random filter r of length 6, and a sketching δ set to 2.
As shown in Fig. 2, the random filter r slides over X10 to
extract subseries of length 6 by calculating the dot product.
This product generates a bit (0 or 1) indicating the sign of the
output. The generated sketch B10 is of length |B10|=7, i.e.,
the dimensionality is reduced from 20 to 7 in this example.

The following lemma states that if two chunks are very

similar to each other, then their binary sketches will also be

very similar.

0 0 0 0 1 0 1

0 0 0 0 1 0 1

0 0 0 0 1 0 1

0 0 0
0 0 1

1 1 1

.. .
.

n-gram Weight

B10 S10

Fig. 3. Generating n-grams from sketch B10 outputs a weighted set S10.

Lemma 1. If the Euclidean norm between two similar chunks
Xi and Y j is close to 0, i.e.,

∥∥Xi − Y j
∥∥ < Ω, where Ω is

close to 0, then the probability that their respective sketches Bi

and Bj will share the same value for each of the dimensions
is close to 1.

Proof: The fact that ‖Xz − Y z‖ < ‖Xi − Y j‖ < Ω,

implies:

‖Xz − Y z‖ < Ω (5)

where Xz and Y z are the zth subseries of length |r| of Xi and

Y j , respectively. Since in practice Xz and Y z are large vectors

of length around 60 or larger, the Euclidean Norm of these

vectors is very close. Hence, we assume that ‖Xz‖ = ‖Y z‖.
Here we can assume that they are equal to 1. Hence, by [12]

the cosine similarity between these vectors is:

‖Xz − Y z‖2 = ‖Xz‖2 + ‖Y z‖2 − cosα‖Xz‖‖Y z‖
‖Xz − Y z‖2 = 2− 2 cosα

(6)

where α is the angle between the vectors Xz and Y z .

From Equations 5 and 6:

cosα > 1− Ω

2
. (7)

The hash function used in sketching (refer to Eq. 4) is known

to preserve the cosine similarity between vectors. Thus, the

probability that their two sketches share same hash value is

high, namely, by [18] it is:

p = 1− arccos
α

π
. (8)

Combining Eq. 7 and Eq. 8, we get:

p > 1− arccos
2π − 2Ω

π
. (9)

By plugging Ω which is close to 0 (see Lemma 1) in Eq. 9, p
becomes close to 1. Lemma 1 is thus proven.

N-Gram Generation: For a chunk Xi, a weighted set Si

is generated by extracting all grams of length n (i.e., n-grams)

from the corresponding sketch Bi along with the frequencies

of each n-gram as its weights. Thus corresponds to:

Si = {(sj , fj)|sj = {Bi
j , B

i
j+1, ..., B

i
j+n−1}, 1 ≤ j < |Bi| − n}

(10)

where sj denotes the jth n-gram and fj denotes its correspond-

ing weight, i.e., frequency of its occurrence in Bi.

Example 2. Given the sketch B10 generated in Ex. 1, we slide
a window of length 3, over the sketch to extract the 3-grams
along with their frequencies in B10 as their weights in Fig. 3.
The weighted set S10 of B10 is represented as a vector of these
23 = 8 grams. We keep the grams sorted based on their binary

533

Algorithm 1: SPS: Single Pass Signature

Input : Weighted Set Vector Sj , Signature Length g
Output : Signatue sig

1 Initialize sig[] = 0
2 Declare:

3 P & Z : Large primes where Z ≤ P
4 a and f : random Integer numbers

5 r =
|Sj |
g

6 foreach i=1 to |Sj | do
7 band ← minimum((i)/r, g − 1)
8 Sig[band] ← Sig[band] + (a ∗ S(i) + f)
9 Sig[band] ← Sig[band] mod P mod Z

10 end
11 return Sig

representation. Thus, the binary representation is implicit and
we only need to maintain the weights vector.

The distances between two weighted set vectors can be

measured using the Hamming Distance metric as in Def. 7.

Definition 7. [Hamming Distance (HD)] Given two vectors

V1 and V2 of equal length in the D-dimensional space of

integer values, the hamming distance HD(V1, V2) is defined

as the number of places where V1 and V2 differ [12].

Lemma 2. If two sketches Bi and Bj are similar, i.e. , differ
in few places (refer to Def. 7), then their weighted sets Si and
Sj are also similar, i.e., differ in few places (refer to Def. 7).

Proof: To prove the correctness of this lemma, we pick the

case where two sketches differ in one position, i.e., HD(Bi,

Bj) = 1, then prove that HD(Si, Sj) ≤ 2n. Given that the

n-gram size is n and the step size to generate n-grams is 1, then

Si and Sj will differ in at most 2n grams due to the mismatch

existing in one single position in their sketches. Note that the

set size, i.e., total possible n-grams is 2n. The ratio of the

n-gram size to the total number of possible n-grams is n : 2n.

Thus, the weighted sets differ in very few places. In addition,

as the size of n-grams n increases, the number of mismatches

increases linearly in 2n and the number of matched n-grams

grows exponentially, i.e., (2n-2n). The rest of the cases can

be proven in a similar manner. Lemma 2 is thus proven.

Step 4 (Hashing): In practice, due to the use of n-grams,

the resulted vectors tend to be extremely long and sparse,

especially with large n [16]. Although sketching [17] uses a

binary alphabet, describing a sketch using n-grams illustrates

the fact that even for a small size alphabet and a relatively

large n-gram size (i.e., n ≥ 15, to meaningfully represent time

series sketches [7]), one often has to deal with large very sparse

vectors, e.g., 215 = 32, 768.

The sparsity results from the fact that usually time series

have a limited pattern compared to other data. This is also

confirmed by our experiments in Section V-A where sparsity

SPS

ht1 ht2 ht3 ht4

Weighted Sets:

H
S

Hashing

Fig. 4. Hashing Weighted Sets Using Algorithm 1 Single Pass Signature
(SPS) Followed by Hashing Signatures (HS) using Algorithm 2.

is measured using the following equation:

Sparsity(%) =
number of zeros in Si

|Si| × 100. (11)

Unfortunately, to the best of our knowledge, no existing

hashing algorithm tailored for extremely sparse weighted sets

has been proposed to date in the literature. Therefore, we

propose a new hashing technique, called Single Pass Signature
(SPS), which overcomes the drawbacks of existing techniques.

Single Pass Signature (SPS). Given a weighted set Si, our

proposed solution SPS generates a signature of length g in a

single pass such that g <<< |Si|. To generate a signature,

SPS breaks the weighted set vector into g disjoint bins, followed

by mapping the weights in each bin into a single value using

some hashing function H (See Algorithm 1) with the number

of non-zeros weights being very small due to the sparsity of

the vector. In our work, we select H to be 2-universal hashing
function [19] since it achieves a low number of collisions,

however, other hash functions could equally be plugged in.

Given that the weights of features as explained above (i.e.,

n-grams), the vector is sparse and consequently bins are sparse,

we hash entire bin weights into a single integer number. The

result g non-zero hashes are then concatenated as SPS signature.

Example 3. Referring to Fig. 4, suppose we have 4 sparse
weighted sets S100, S200, S300 and S400. Then to hash them
using the SPS technique, we pick a hashing function H; a 2-
universal hashing in our case. The simplest strategy for H is to
pick two large prime numbers P and Z where P ≥ Z, sample
two random numbers a, f and compute [19]: H(x) = (((ax+f)
mod P) mod Z). In this example, a=1.62, f=4.69, P=101
and Z=11 . For ease of presentation, sets are represented as
circles where similar colors of the circles indicate the similarity
of their corresponding sets. Each set is of length 24 and the
degree of sparsity is ≈ 83% (Eq. 11). g is set to 8. Thus, the
weighted sets will divided into 8 bins of size 24/8 = 3. Then
to generate a signature, each bin will be hashed using the hash
function H as in Algorithm 1.

534

Algorithm 2: HS: Hashing Signatures into Hash Tables

Input : Signature sig, number of bands b and rows r
Output : mapping sig to a bucket in each of b hash

tables

1 Initialize:

2 hashes[b] = 0
3 hts bkts[b] = 0
4 Declare:

5 P : Large prime

6 foreach i=1 to g do
7 Band ← minimum((i)/r, b− 1)
8 hashes[Band] ← (hashes[Band] + sig(i)) mod P
9 end

10 foreach m=1 to b do
11 hts bkts.add ((m, hashes(m)))

12 end
13 return hts bkts

This generates a lower-dimensional signature sig of length

g (g <<< |Si|). Next, to index the chunks, we build hash

tables and index their weighted set signatures. We construct

the hash tables by applying the well-known LSH approach

known as Banding Technique [12]. Given a signature of length

g, the signature would be broke down into b bands, each of

size r. The choice of parameters r and b corresponds to a

trade-off between speed and accuracy, the smaller r, the more

accurate the result to answer the query, but the slower the

response time [12]. Besides, the choices of r and b also decide

how similar a pair of signatures needs to be to share a bucket

in at least one hash table. This similarity (JS) (See Def. 6)

approximately corresponds to s = (1b)
1/r [12]. This similarity

(JS) as a parameter is passed along with the signature sig to

Algorithm 2, which maps the signature into b hash tables.

Example 4. Following Example 3 referring to Fig. 4, suppose
that we want signatures that are ≥ 50% similar to share a
bucket in at least a single hash table hti, then s is set to 0.50.
As a result we got r = 2, b = 4. Each of the 4 bands will be
hashed into 4 hash tables as shown in Figure 4. In Algorithm
2, we use the mod hash function with in this example P = 7.

Lemma 3. If two weighted set vectors Si and Sj share the
majority of positions, e.g., HD(Si, Sj) ≤ 2n (where |Si| =
|Sj | = 2n), then ChainLink guarantees that by generating an
SPS signature of lengths 2n+1 and hash it, vectors will collide
in at least a single hash table.

Proof: By Lemma 2, assuming that the weighted sets

Si and Sj have 2n dissimilar grams, and given that SPS
breaks the weighted sets Si and Sj into equal length bins, the

worst case scenario of the distribution of the dissimilar 2n
grams within the set is to have a single affected gram in each

bin. Given that, to guarantee that the signatures will share at

least a single bit, then the number of bins, i.e., the length of

signature g should be > 2n. Notice that n is in the order of

Local Index

+

Indexed Partition IP2

ArrayTS

Multiple Hash Tables

…
…ht1 ht2 ht3 ht4

Fig. 5. Indexed Partition (IP2). Consists of: Local Index, Array-Organized
Time Series and Partition Number (p = 2).

few tens while signatures can range from a few hundreds to

a few thousands, i.e., the majority of the signatures will be

identical for both sets. However, assuming the worst case, we

set g to 2n+ 1, then to hash the signatures and guarantee that

they will collide in at least a single hash table, we set r to 1
and b to 2n+ 1, i.e., 2n+ 1 hash tables. Lemma 3 is proven.

Based on Lemmas 1, 2, and 3, the following important

theorem can now be formulated that ChainLink index preserves

the similarity of the original chunks that were indeed similar.

Theorem 1. Given two similar chunks Xi and Y j , i.e., ED(Xi,
Y j) close to 0, it is guaranteed that Xi and Y j will collide in
at least a single hash table by constructing ChainLink index.

Proof: This Theorem is proved using Lemma 1, 2 and 3.

C. ChainLink Global Index : CL-Global

Lastly, we design the global index CL-Global to correspond a

centralized yet highly compact index used for effective pruning

of irrelevant partitions during query processing. CL-Global,

which resides in the cluster’s master node is constructed by

summarizing and aggregating the local indices. To build the

global index, the master node retrieves from each indexed

partition p the keys of its compact CL-Local hash map (only the

keys which constitute the hash table ids and bucket numbers).

All results are then grouped by the key, and the partition ids

are combined together. In short, the global index (CL-Global)

format is a centralized hash map, where the key field is a

concatenation of a hash table id and a bucket number, and the

value field is a list of partition ids.

To further compress the global index, the list of partition ids

are compressed either using range compression, i.e., contiguous

ids are compressed by keeping only the first and last ids

as a range, or bitmap compression, i.e., the partition ids are

represented as a bit vector and only the present ones are set

to 1. Each entry in the global index is compressed using the

more effective method between these two compression types.

Overall Index Construction: Following the map-reduce

distributed paradigm, the entire ChainLink index, both the

local index and the global one, is built in a single map-

combine-reduce job. First, the mappers process each partition

and create the corresponding indexed partition as in Figure 5.

The combiners, one per each worker machine, combine the

535

Master
Worker

Query
(Q)

Extract Chunks

Sketch n-gram Hash

(Q, chunk, offset)

Set of :
{hti_ bkti} Offset

Global
Index

{hti_ bkti} p - Load : Partitions (p)
into Workers.

- Broadcast Q.
- Broadcast Set of :

{hti_ bkti} Offset.

Find local kNN

Result:
Global
kNN

Fig. 6. ChainLink Query Processing.

hash-map keys from all partitions within each machine, to

create a partial intermediate global index, and then a single

centralized reducer combines these partial indexes to form the

final global index. As will be confirmed by the experimental

evaluation in Section V-B, the creation of the entire index is

an efficient operation that involves minimal data shuffling and

distribution among the cluster machines.

IV. CHAINLINK QUERY PROCESSING

The strategy of answering an approximate kNN query Q
using ChainLink index is as follows (see Figure 6). Assume an

input query sequence Q and a user-defined parameter k. The

master node divides Q into chunks using a sliding window

of length w, where w is the window size used for building

the ChainLink index. These chunks, which can be many for

long query sequences, are distributed randomly across the

worker nodes. Each chunk is processed by sketching, n-gram
generation and hashing into multiple hash tables using our

proposed SPS technique (See Section III-B).

The hashing results, which are a collection of entries with

a key of {hash table id (hti), bucket id (bkti)} (Algorithm

2), and a value of a chunk offset within Q, are shipped back

to the master node as in Figure 6. The master node accesses

the corresponding entries (having the same key) in the global

index CL-Global, and retrieves their respective partition ids.

The worker nodes holding these partitions start to perform the

local processing. The worker nodes receive the broadcasted

Q and its hashing results. Each worker node accesses the

corresponding entries in the CL-Local (the entries having the

same key), and retrieves the matching time series ids and

their chunk ids. From these ids, the actual time series data are

retrieved in O(1) time complexity due to the array organization.

Finally, the collected time series chunks represent the

candidate set within which the search for the best local kNN

is performed using Euclidean Distance (Def. 4). The best kNN

from each worker are then collected by the master node for

producing the final results.

V. EXPERIMENTAL EVALUATION

A. Experimental Methodology and Setup

Cluster Setup. All experiments were conducted on a cluster

consisting of 2 nodes each composed of 56 Intel@Xeon CPU

E5-2690 2.60GHz processors, 500GB RAM, 3.5 TB HDD.

Each node is connected to a Gigabyte Ethernet switch and runs

Ubuntu 16.04.3 LTS with Spark-2.0.2 and Hbase-1.4.7.

Baseline Indexing Solutions. To show the effectiveness of

our novel SPS hashing algorithm designed for ChainLink, we

have created two variations of ChainLink. In one variation we

use SPS, referred to as CL-SPS, and in the other we use CWS

[15], referred to as CL-CWS.

Given long subsequence matching as our target, we also

compare ChainLink with UCR Suite [2]. We develop a

distributed variant of UCR-ED that leverages the full compute

power of distributed workers to assure we conduct a fair

comparison. We refer to this solution as UCR-ED. Lastly,

we also consider KV-match [6] as a baseline for indexing

subsequences in a distributed system, referred to as KVM.

Although the work in [14] is relevant, it is excluded from

our comparison because: (1) The construction of their red-

green map structure requires not only multiple passes over the

weighted sets but also mandates materializing them on disk,

which is prohibitively expensive for TB scale data, and (2) The

sampling time to generate the hashing signatures is inversely

proportional to the density of the weighted set vectors, and thus

for very sparse data the sampling time becomes impractical.

datasets. We use two benchmark datasets. RandomWalk
(RW) has been used extensively as the benchmark for time

series indexing in other projects [2], [5], [7]. This dataset is

generated for 108 time series each with 2 ∗ 104 data points

(i.e. 1012 ≈ 3.5 TB). DNA [20] contains an assembly of the

human genome collected in (2000-2013). Each DNA string is

converted into time series. We then concatenate them and use

a sliding window of length 104 to generate a 200 GB dataset.

Parameter Settings. For this study, two ChainLink indices

are built, one with a window of length 1, 000 and another of

length 2, 0001. For the parameter selection, the choice of the

length of the random filter R is data dependent. Even though,

a 1-bit sketch with a large R would be non-informative while

it would be noisy with a very small R. When |R| ∈ [40 - 80]

for RW and |R| ∈ [30, 60] for DNA, query results are returned

with an acceptable error ratio ∈ [0.2 - 0.9] for different k values.

When |R| > 80 for RW and |R| > 60 for DNA, the error ratio

increases. The effect of decreasing |R| on the processing speed

is negligible, just a few minutes.

Regarding the step size δ, we found that the best range to pick

from for δ is [0 - 10] to limit the error ratio from exceeding

0.9. The effect on the processing speed by decreasing δ is

negligible, only few minutes. For n-gram generation, the size

of n is set to be in [15-20] to assure that the error ratio wont

exceeds 0.9. For RW, we chose the following: |R| = 60, δ = 5,

n = 15, where we chose |R| = 50, δ = 3, n = 15 for DNA.

For the hashing parameters, we choose the length of signature

to be sig = 256, the number of rows and bands are r = 8 and

b = 32 respectively. LSH applications require the hash table

to have a large number of buckets, like 500.

Degree of Sparsity. A sample is taken, sketched, a weighted

set is generated using n-grams generation and then Eq.11 is

applied on each weighted set and the results are averaged. The

degree of sparsity of RW is about 99.92%, meaning that only

2, 621 out of 32, 768 are non-zero values whereas it is about

99.80% containing ≈ 6, 554 non-zeros for DNA.

1Additional experiments on shorter window sizes can be found in [21].

536

(a) Index Construction Time (RW) (c) Datasets Comparison(b) Index Size (RW)

Fig. 7. Index Construction Analysis [Log Scale].

B. Evaluation of Index Construction

Index Construction Time. The ChainLink index construc-

tion time is dominated by the CL-local construction time.

Comparing CL-SPS to CL-CWS, CL-local construction time

demonstrates the speedup obtained using SPS. CL-SPS CL-

local construction time is two orders of magnitude faster than

CL-CWS as shown in Figure 7 (a). Better yet, CL-SPS is more

than an order of magnitude faster than KVM. Note that those
numbers refer to the process of building the two indices.

Figure 7 (c) shows the difference between two datasets with

the same size, 1011-RW and 1011-DNA. There is no huge

difference between them, CL-SPS takes a total of 144 minutes

for RW while it takes 119 for DNA. The difference is due

to the data dependent parameters used for sketching. Different

datasets have different patterns. Hence, different parameters

for sketching are needed to capture the trends. Despite that,

CL-SPS continuous to be superior by achieving two order
of magnitude and one order of magnitude faster speed than

CL-CWS and KVM, respectively.

Index Size. The size of the CL-local index is affected by

the number of buckets for each hash table, the length of the

signature and as a consequence r and b (i.e., number of hash

tables). Since we use the same parameters for both CL-SPS
and CL-CWS, the size of their indices are comparable. That is,

the former is somewhat smaller than the latter. For instance,

for 1012-RW, the size of CL-local generated by CL-SPS equals

to 63.9 GB (≈ 1.78% of dataset size) whereas it is about 72.7

GB (≈ 2.03% of dataset size) for that generated by CL-CWS.

On the other hand, the KVM index size is prohibitively large

in size, namely, the size of the index equals almost the size of

the dataset.

While CL-global is affected by the aforementioned parame-

ters and the number of partitions, the compression technique

described in Section III-C overcomes the effect of these

parameters. For 1012-RW, the size of CL-global generated

by CL-SPS is about 6 MB whereas it is about 7 MB for that

generated by CL-CWS. This lightweight index size enables

ChainLink to persist CL-global in the master node’s RAM to

process consecutive queries.

C. Evaluation of Query Processing

We measure the query performance by taking the average

of over 50 distinct subsequence queries.

We study the query response time and the quality of the kNN-

approximate answer under a rich variety of parameter settings.

The quality of the kNN-approximate answer is measured by the

error ratio and recall metrics that are standard metrics in the

context of high-dimension nearest neighbor queries [5], [11],

[13]. Given a query Q, we denote the set of exact k nearest

neighbors as G(Q) = {g1, · · · , gk}, and the actual query result

as R(Q) = {r1, · · · , rk}. Then the error ratio ≥ 1 is defined

as:

error ratio =
1

k

k∑
j=1

ED(Q, rj)

ED(Q, gj)
(12)

where 1.0 is the best score and it indicates an exact match

between sets G and R, and the closer to 1.0 the better the

quality of the results.

On the other hand, recall ∈ [0, 1] is defined as:

recall =
|G(q) ∩R(q)|
|G(q)| (13)

In the ideal case, the recall score is 1.0, which means all k
nearest neighbor are returned, and the closer to 1.0 the better

the match with the exact answer set.

Since we compare CL-SPS against three systems with

different characteristics (CL-CWS, distributed UCR-ED and

KVM), we evaluate its query processing against each solution

separately to achieve a fair comparison. Below, we first study

the effect of varying the dataset size and the k value for

different query lengths on the response time and, error ratio

and recall for CL-SPS.

Impact of Varying Parameters on Query Performance
for CL-SPS. On the left hand side of Fig. 8, we study the effect

of varing the dataset size. In Fig.8 (a), the query response time

for different query lengths (|Q| ∈ {2000, 3000, 4000, 5000})
under different dataset sizes follows the same pattern. That is,

the time for different lengths is almost the same on the same

dataset size. The increase in time for a given query length on

different datasets is linear in the size of the dataset, e.g., the

response time for |Q| = 5, 000 on (109, 1010, 1011 & 1012) is

respectively (0.9, 2.4, 12.5, 100.5) minutes.

In Figure 8 (c), we study the error ratio for different query

lengths under various dataset sizes. We observe that it again

follows the same pattern, i.e., as the size of the dataset increases,

the error ratio decreases for all query lengths. Also the error

ratio of the approximate answer approaches 1, i.e., it is very

537

(a) Query Response Time (K=50). (b) Query Response Time (10¹¹-RW).

(c) Error Ratio (K=50). (d) Error Ratio (10¹¹-RW).

(e) Recall (K=50). (f) Recall (10¹¹-RW).

Fig. 8. Impact on Query Response Time, Error Ratio & Recall. Left: Varying
dataset Sizes. Right: Varying K Values.

similar to exact answer. As shown, it is decreasing from about

1.7 to about 1.5 for |Q| = 2000 as the dataset size increases

from 109 to 1012. This proves the efficiency of answering

near-exact kNN using LSH approaches for TB-scale datasets.

In Figure 8 (e), we study the recall for different query lengths

under various dataset sizes. As shown in the figure, the recall

is within the range of 30% to 25%. As expected, the recall gets

decreased as the dataset size increases since more approximate

matches become possible. On the right hand side of Figure

8, we study the effect of varying the number of neighbors k.

In Figure 8 (b), as the value of k increases (50 to 5, 000), the

response time slightly increases (in seconds). In Figure 8 (d),

the error ratio for different query lengths follows a similar

pattern. The error ratio for a given query length decreases as

k increases because the search space gets larger and objects

very similar to the query object are found. For large k, e.g.,

k ∈ [500 − 5, 000], the error ratio becomes constant since a

larger set of values are averaged according to Eq. 12. In Figure

8 (f), the recall value over small k is around 25%, and it gets

smaller as k increases.

Although the recall value when analyzed in isolation seems

low, it is crucial to combine the recall results with the error

ratio results for better interpretation. More collective analysis

over Figures 8 (c) & (e), and (d) & (f) indicates that for

big datasets there is a very good chance to find very close

high-quality approximate matches to your query object even if

they are not identical to the exact answer set. Moreover, this

chance increases as the dataset size and k increase, which is

aligned with our main assumption that approximate processing

is more suitable for big data applications.

(a) Query Response Time (RW) (b) Query Response Time (DNA)

(c) Error Ratio (RW) (d) Error Ratio (DNA)

(e) Recall (RW) (f) Recall (DNA)

Fig. 9. Query Evaluation (CL-SPS vs. CL-CWS).

ChainLink Query Evaluation using Different Hashing
Schemes CL-SPS vs. CL-CWS. In Figure 9, we evaluate the

query response time, error ratio and recall for two different

datasets, namely, 1011-RW and DNA. In Figures 9 (a) and (b),

the query response time of our CL-SPS method is up to 33%
faster than CL-CWS for both 1011-RW and DNA for all query

lengths where k = 50.

For the error ratio (Figures 9 (c) & (d)) and the recall (in 9

(e) & (f)), the behavior is very similar to that in Figure 8. The

CL-SPS algorithm shows better error ratio and recall than CL-

CWS because the proposed SPS hashing mechanism preserves

the proximity among the time series subsequences better.

Query Evaluation of ChainLink CL-SPS vs. UCR-ED.
UCR-ED employs branch and bound algorithms to safely

prune the search space without building an index beforehand.

Although it is said to support long subseqences better than

existing systems, as the query length grows, we notice that the

bounds become looser causing decrease in the query response

time as our experimental study demonstrates.

We study query response time for different query lengths

where k = 5, 000 while varying dataset sizes. We also study

how many queries need to be executed by both UCR-ED and

CL-SPS before the overcome of first building the CL-SPS

respective indices before utilizing them for query processing.

This is calculated as follows:

Number of Queries =
idxT ime− Saving

UCR response time
(14)

where idxTime = CL-SPS total index construction time and

saving = UCR-ED response time - CL-SPS response time.

Generally, as shown in Figures 10 (a-e), the query response

time for both UCR-ED and CL-SPS follows the same pattern

538

(a) Dataset: -RW (b) Dataset: -RW

(c) Dataset: -RW (d) Dataset: -DNA

(e) Dataset: -RW (f) Cost of Building Index

Fig. 10. Query Evaluation (CL-SPS vs. UCR-ED).

across different datasets sizes. As the query lengths grow, CL-

SPS almost remains constant while the UCR-ED response time

increases linearly. In Fig. 10 (a) & (b), CL-SPS is 85% to

600% faster than UCR-ED on 109-RW & 1010-RW. As can

be seen, the larger the dataset the faster the query excution

performed by CL-SPS becomes compared to UCR-ED.

In Fig. 10 (c) & (d), the query response time is studied

for different datasets with the same size, 1011-RW and DNA.

For the former dataset, CL-SPS is 500%− 1000% faster than

UCR-ED whereas for the latter it is faster by 240%− 500%.

In Fig. 10 (e), CL-SPS records its fastest response on the

largest dataset in our study, namely, 1012-RW. It is 500% −
1019% faster than UCR-ED.

To evaluate CL-SPS more thoroughly, we consider not only

the query processing time but we also incorporate the time

consumed for first building the index. As explained above,

the metric in Equation 14 determines the number of queries

executed until the cost of building indices is amortized. This

number is calculated for each dataset size, given that CL-SPS

supports arbitrary query lengths, the query length selected for

this study corresponds to the mid-point of all the different

query lengths considered in this study, namely, 3, 500. As a

consequence, the query response time for both CL-SPS and

UCR-ED corresponds to that of query length |Q| = 3, 500.

It is important to observe, as shown in Fig. 10 (f), that

our ChainLink CL-SPS solution starts to pay back the costs

of index construction time already after approximately two
queries for 109-RW and after a single query for both 1010-RW

and 1011-RW. Moreover, for the largest dataset of size ≈ 3.5

TB, i.e., size 1012, there is no cost to pay back. In fact, the

index construction time for this dataset is smaller than the

query response time of UCR-ED.

(b) Datasets Comparison(a) Index Probing Time (RW)

Fig. 11. Query Evaluation (CL-SPS vs. KVM).

Query Evaluation of ChainLink CL-SPS vs. KVM.
Although KVM is the state-of-the-art distributed index for

subsequence matching, it only supports range queries (i.e., ε-
queries) instead of the more complex kNN queries we target.

To overcome this discrepancy in functionality, we adopt the

following commonly-adopted strategy for realizing the kNN

functionality by leveraging a range query. Namely, the index

is queried with different ε values until the number of results

retrieved is ≥ k. The procedure selects a specific value like

ε = 20 to start with, and then tracks the number of retrieved

answers. If it is less than k then epsilon is doubled (i.e.,

ε = 40) recursively until the number of retrieved results

becomes ≥ k. A second challenge in this comparison is

that KVM is implemented on top of HBase, where the time

series objects and the index entries themselves are all stored in

Hbase tables. Thus a metric that is infrastructure-independent

is needed, because the query response time for KVM also

includes the time for fetching consecutive rows from the HBase

index tables and HBase time series tables multiple times from

disk to memory whereas the CL-SPS query response time

includes loading partitions that contain candidate matches into

workers’ memory. Since both systems support the indexing

of subsequences, we measure the quality of the index by

calculating the index probing time (i.e., the time needed to

visit the index to get candidate matches).

As illustrated in Figure 11 (a), the index probing time for

both systems CL-SPS and KVM increases linearly in the dataset

size. However, our CL-SPS solution is 32%−144% faster than

KVM. In Figure 11 (b), CL-SPS is 57% faster than KVM

on both datasets 1011-RW and DNA, meaning that the index

probing time is almost the same on different dataset sizes.

ChainLink Scale-out Performance. Figure 12 displays

results from an experiment where we fix all parameters and

vary the number of executers in the cluster over {20, 40, 60,

80, 100, 112}. We measure both critical metrics of the index

construction time and the query response time, while other

metrics are not highly sensitive to the cluster configuration. The

results in Fig. 12(a) show that ChainLink scales up very well

as the degree of parallelization increases. This is because the

index construction process is a single map-reduce job with no

hidden communication, synchronization, or bottleneck. Thus

it is expected to scale-up very nicely as more resources are

added to the cluster. Moreover, Fig. 12(b) shows that the query

response time is constant. This is because the global index

of ChainLink typically assures that very few partitions are

accessed, which then can be performed in parallel all at once.

539

(a) Index Construction Time (10¹¹-RW). (b) Query Response Time (10¹¹-RW).

Fig. 12. Scalability with Increasing Number of Executers.

VI. RELATED WORK

Although the literature on time series topics is vast; little

work exists to date in distributed systems for tackling massive

sets of such time series data for similarity exploration. Some

work focuses on the simple problem of complete time series

matching, i.e., whole sequence matching. In such whole

sequence matching, it is assumed that the time series objects

to be indexed and compared have the same length [22]. Two

recently proposed systems [23] and [5] address the problem of

whole sequence matching, which is a fundamentally different

problem from subsequence matching.
In addition, few systems focus on the more general sub-

sequence matching. The work in [24] and [25] support

long subsequences, however they are designed for centralized

processing. Therefore, these systems [24], [25] and our system

target different infrastructures, different scale of data, and

consequently different challenges and design decisions. For

example, it is reported in [24] that building the index over

750 GBs dataset takes around 41 hours. In contrast, our system,

as a distributed solution, takes 9 hours to build the index over

3 TB dataset.
Wang et al. [1] propose a distributed system which constructs

a vertical inverted table and horizontal segment trees based

on the PAA summarization of time series data. This system

only supports a simplified subsequence matching, namely, to

match prefixes on a fixed offset location of the time series

specified by the user in the query. Moreover, the authors state

that for large k > 50, their kNN query performance degrades

quickly and converges to the brute force search [1]. In contrast,

ChainLink is scalable for k in the thousands. KV-Match [6],

focusing on distributed range query support instead of the more

complex kNN queries, implements a file-based structure on

HBase tables. As our experiments in Section V-C confirm, KV-

Match has serious scalability issues regarding the index size in

the same scale of the original dataset and in index construction

time. In contrast, as shown by our experiments, our ChainLink

is an order of magnitude faster in index construction time.

VII. CONCLUSION

In this work, we demonstrated that the combination of big
time series data, distributed processing, long query sequences,

and approximate kNN similarity search, introduces real chal-

lenges to many modern applications that to date has not yet been

addressed properly. To address these challenges, we proposed

ChainLink, a scalable distributed indexing framework for big

time series data. ChainLink introduces an integrated solution

including data re-organization for efficient record-level accesses,

scalable indexing structure for approximate similarity search,
and a novel hashing technique (SPS) as a core building block of

the index. Our experiments over an extensive set of parameter

settings and datasets show the superiority of ChainLink over

existing technique by orders of magnitudes in terms of index

construction overheads and query processing while maintaining

excellent result accuracy.

REFERENCES

[1] X. Wang, Z. Fang, P. Wang, R. Zhu, and W. Wang, “A distributed
multi-level composite index for knn processing on long time series,” in
DASFAA. Springer, 2017, pp. 215–230.

[2] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of
time series subsequences under dynamic time warping,” in SIGKDD.
ACM, 2012, pp. 262–270.

[3] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor:
Towards removing the curse of dimensionality,” Theory of computing,
vol. 8, no. 1, pp. 321–350, 2012.

[4] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation of
practical approximate nearest neighbor algorithms,” in Advances in neural
information processing systems, 2005, pp. 825–832.

[5] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner,
“TARDIS: Distributed indexing framework for big time series data,” in
ICDE. IEEE, 2019.

[6] J. Wu, P. Wang, C. Wang, W. Wang, and J. Wang, “KV-Match: An
efficient subsequence matching approach for large scale time series,”
2017.

[7] C. Luo and A. Shrivastava, “SSH (sketch, shingle, & hash) for indexing
massive-scale time series,” in NIPS, 2017, pp. 38–58.

[8] Z. A. Neseeba P.B, “Performance analysis of hbase,” International
Journal of Latest Technology in Engineering, Management & Applied
Science, vol. 8, no. 10, pp. 84–89, 2017.

[9] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, “Duality-based subsequence
matching in time-series databases,” in ICDE. IEEE, 2001, pp. 263–272.

[10] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[11] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, 1999, pp. 518–529.

[12] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive datasets.
Cambridge university press, 2014.

[13] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
lsh: efficient indexing for high-dimensional similarity search.” VLDB,
2007, pp. 950–961.

[14] A. Shrivastava, “Simple and efficient weighted minwise hashing,” in
NIPS, 2016, pp. 1498–1506.

[15] S. Ioffe, “Improved consistent sampling, weighted minhash and l1
sketching,” in ICDM. IEEE, 2010, pp. 246–255.

[16] A. Shrivastava and P. Li, “Densifying one permutation hashing via
rotation for fast near neighbor search,” in ICML. IMLS, 2014, pp.
557–565.

[17] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying representative
trends in massive time series data sets using sketches,” in VLDB, 2000,
pp. 363–372.

[18] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” ser. NIPS’15. MIT
Press, 2015, pp. 1225–1233.

[19] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
in JCSC. Elsevier, 1979, pp. 143–154.

[20] UCSC, https://genome.ucsc.edu/.
[21] WPI Dept of Computer Science Technical Re-

port Number WPI-CS-TR-19-05. [Online]. Available:
https://web.cs.wpi.edu/cs/resources/technical.html

[22] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence
matching in time-series databases. ACM, 1994, vol. 23.

[23] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, “Dpisax:
Massively distributed partitioned isax,” in ICDM, 2017, pp. 1–6.

[24] M. Linardi and T. Palpanas, “Scalable, variable-length similarity search
in data series: The ulisse approach,” vol. 11, no. 13. VLDB, 2018, pp.
2236–2248.

[25] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “The
lernaean hydra of data series similarity search: An experimental evaluation
of the state of the art,” Proc. VLDB Endow., vol. 12, 2018.

540

